Bayesian Inference of Finite Population Quantiles for Skewed Survey Data Using Skew-Normal Penalized Spline Regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.

We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior pre...

متن کامل

Bayesian inference for finite population quantiles from unequal probability samples.

This paper develops two Bayesian methods for inference about finite population quantiles of continuous survey variables from unequal probability sampling. The first method estimates cumulative distribution functions of the continuous survey variable by fitting a number of probit penalized spline regression models on the inclusion probabilities. The finite population quantiles are then obtained ...

متن کامل

Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferenti...

متن کامل

Bootstrapping for Penalized Spline Regression∗†‡

We describe and contrast several different bootstrapping procedures for penalized spline smoothers. The bootstrapping procedures considered are variations on existing methods, developed under two different probabilistic frameworks. Under the first framework, penalized spline regression is considered an estimation technique to find an unknown smooth function. The smooth function is represented i...

متن کامل

Approximate Bayesian Inference for Quantiles

Suppose data consist of a random sample from a distribution function FY , which is unknown, and that interest focuses on inferences on θ, a vector of quantiles of FY . When the likelihood function is not fully specified, a posterior density cannot be calculated and Bayesian inference is difficult. This article considers an approach which relies on a substitution likelihood characterized by a ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Survey Statistics and Methodology

سال: 2019

ISSN: 2325-0984,2325-0992

DOI: 10.1093/jssam/smz016